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LOADED,RECTANGULAR FLAT-PLATE

By Robert F. Smiley

As part of a landing investigation

HEWJ31Y

MODEL

being conducted at-the Langley
impact basin to determine the distribution of water pressure on sea-
planes, a rectangular flat-plate model, 1 foot wide and 5 feet long,
was subjected to smooth-water impact and planing tests. Landings were
made at fixed trims of 6°, 9°, 12°, 15° 30°, and 45° for a range of

6flight-path angles from approximately 2 to 20°, with beam-loading
coefficients of 18.8 and 36.5. Planing runs were made at trims of 6°,
15°, 300, and 45°.

Initial impact conditions and maximum pressures are presented in
tables and figures for all impacts, together with time histories of the
pressure distribution, draft, vertical yelocity, vertical acceleration,
and wetted length.

The pressure coefficients bhsed on the equivalent planing velocity
appqsred to be substantially independent of the deceleration of the model
normal to the plate. ‘Thepeak pressures were substantially equal to the
dynamic pressure corresponding’tothe velocity of the peak-pressure
point, for which velocity an approxhnate equation was derived. For
wetted-length - beam ratios greater than approximately 1.5, this velocity
was equal to the equivaleritplaning velocity for all flight-path angles;
for wetted-length - besm ratios less than approximately 1.5, the ratio
between tl@ velocity and,the equivalent planing velocity was unity for
planing (O” flight-path angle) and increased
path angle.

~ INTRODUCTION

with increase of flight-

,-

In order to obtain”iil?ormationregtiding the magnitude and distri-
bution of the hydrodyn@c loads occurring during ~eaplm:landings, a

., . ... -, .“” . .
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large amount of theoretical and experimental research has been conducted
(references 1 to 18), most of which has dealt with the problem of a
V-bottom prismatic surface having a finite angle of dead rise (refer-
ences 1 t= 10).
rectmar flat
able information
conditions.

In order to

For the limiting case of 0° angle of dead rise (the
plate), some regearch has been conducted but the avail-
is hardly adequate to describe completely all practical

>

supply more complete information on this subject, a
series of landing a~= planing te~ts has been conducted at the Lan@ey
impact basin tith a rectangular flat-plate model having abeamof 1 foot
and a length of 5 feet. Fixed-trim landings were made in smooth water
for a large range of trims, velocities, and flight-path angles and for
beam-loading coefficients of 18.8 and 36.5. Duringeach landing,,time
histories of the pressures, velocities, draft, wetted length, and over-
all loads were recorded. Also, several planing runs were made during
which pressure and horizontal-velocitymeasurements were recorded.

The purpose of this paper is to present the experimental pressure-
distributionj velocity, draft, wetted-length, and acceleration data
obtained from these landing and planing tests and to analyze these data
to show the effects of instantaneous flight-path angle, besm loading or
model deceleration, and the velocity of the peak-pressure point on the

.

pressure distribution. The peak pressures are correlated with the dynamic
pressure corresponding to the velocity of the peak-pressure point, for
Wch velocity an appro-te equation is derived.

SYMBOLS

b besm of modelj feet

i equivalent planing velocity, feet per second
(
i+jCOtT

5

)
or —

sin -r
+$

g accelerate-6ndue to gravity, 32.2 feet per second per second

m mass of model and.dropping weight, slugs.

4W impact acceleration normal to undisturbed water surface, g units

P instantaneous pressure, po.mds per square inch
“

: instantaneous velocity of model parallel to model longitudinal

center line, feet & second (~ COS T - i sin T)

,-_ ——
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time after water contact, seconds

instantaneous resultant velocity of model, feet per second

weight of model and dropping weight, pounds

instantaneous velocity of peak-pressure point (see fig. 11),

( c)feet per second ~ N

instantaneous velocity of model psrallel to undisturbed water
surface, feet per second

instantaneous draft of model normal to undisturbed wat& surface,
feet

in~tantaneoue velocity of model normal to undisturbed water ~
surface, feet per second

instantaneous velocity of model normal to model surface, feet

per second (~ sin~ + ~ cos T)

instantaneous acceleration of model normal to model surface,
feet per second per second

instantaneous flight-path angle relative to undisturbed water

surface, degrees
()
tan-l ;

distance forward of step, measured paraliel to longitudinal
center line of model, feet

transverse distance from center ‘lineof model, feet

distance forward of step, measured parallel to longitudinal
center line of model, beams

length of model below undisturbed water surface, beams

wetted length based on peak-pressure location (longitudinal
distance from

.

mass density of

trim, degrees

step to position of peak press=e)~ beams

water, i.g38 shgs per cubic foot

.

●

.
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Subscripts:

o at water contact

P at peak presmire

Dimensionless variables:

CA

N

D

()beam-loading coefficient ~
pb

()

$p$-
pressme ratio —

; pP

pressure coefficient based on ~

pressure coefficient based on w

APPARATUS

.,

le~h of a l-foot-wide
weighing @ pounds per foot.

The test model was made from a ~-foot
American standard structural-steelchannel
The outside face of this channel was machined to a smooth surface. A
sketch of the model is shown in figure 1.

The investigation was conducted in the Langley impact basin with
the test equipment and instrumeqtatioh described in reference 16. .
Accelerations in the vertical direction were measured with two oil-
dsmped strain-gage-typeaccelerometers hating approximately 0.65 of the’
critical damping. One accelerometer had a range from -12g to 12g and a’
natural frequency of 120 cycles per second and tis recorded by a 0.65
critically damped galvanometershaving a natural frequency of 150 cycles
per secorid. The other accelerometerhad a range from -8g to 8g and a
natural frequency of 105 cycles per second and was recorded by a 0.65
critically damped galvanometershaving a natural frequency of 100 cycles
per second. -Pitchingmoments were obtained from an electrical strain- ●

gage-type dynamometer. The instants of water contact and exit of the
model were determined by means of an electrical circuit completed by

\

.
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the water. Pressures were “measuredwith 19 gages distributed over the
1

hull bottom as shown in figure 1. Eighteen of these gages had flat

1 irichdiameter which were mounted flush with $he hulldiaphragms of--
2

bottom. The other was a bellows-type gage with a ~-inch-diameter
.4

indicating surface. Natural frequencies of the pressure gages were
several thousand cycles per second and’the response of the oscillograph
recording system was accurate to slightly more than 1000 cycles
second. A ssmple record is show-as figure 2..

PRECISION

The instrumentationused in these tests gives measurements
estimated to be usually accurate within’the following limits:

Hor~zontal velocity:
Initial values for’landings, ‘feetper second . .
Time histories for planing ~sj feet per second

Initial vertical velocity, feet per second . . . . . .
.Draft, feet . .“. . . . . .’. . . . . . . . . . . . .
Modelweight, pounds . . . . . . . . . . . . . . . . .
Veitical acceleration, g . . . . . . . . . . . . . . .
Pitching mqnent about step, ~ercent . . . . . . . . .
Pressure, pounds per square inch . . . . . . . . . . .
Time, seconds . . . . . .“. . . . . . . . . . . . . .

per

that are

. . . . . . @.5

. . . . . . h

. ..0.. ~o.p

. . . . . to. ’03.. -tZ. . . . . . .

..0..0 ~o.p

● . . . . .
?8

t2 t O.lp. . .
. . . . . to.oo5 -

The limits for the pressure data take into account random and
reading errors for a uniformly distributed pressure on the gage diaphragm.
If the ‘pressyrewere substantially nonuniform over the gage, as was
probably the case for some of these experimental data, there would bee
additional errors dependent on the gage size and response characteristics
and on the shape of th”epressure-distributionpattern.

‘I@ PRocimm

.

A series.of landing and planing &ns was qade in smooth water with
the model at 0° ~w and roll and at vsrious fixed,trims. Twenty-two
landings ‘keremade with the modez loaded to a weight of’llT6 pounds,
which corresponded to a,besm~loading coefficient of 18.8. For these
landing runs the model was tested at trims of 6°, 90, IZIO, 150, 30°, “
and 45 for a range of flight-path angles from approximately 2° to 230.

{>——.. u -— —..— ——— .
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Three landings were made with the model loaded to a weight of 2276 pounds,
o

which corresponded to a beam-loading coefficient of 36.5. These three ‘
runs were made at trims of 120, 15°, and 30°, with flight-path angles of
approximately 70, 8°, and 10°, respectively. During each landing a
compressed-air engine (described in reference 16) exerted a vertical lift
force on the model equal to its weight so that the model simulated a
seaplane with wing lift equal to the weight of the seaplane. Otherwise
the model was free to move in the vertical direction. The model was
attached to a towing carriage weighing approximately 5h0 pounds. Because
of this large additional carriage inertia, the model did not slow down
significantly (horizontally)during any landing.

The planing runs were made with the model set at a given draft which
was maintained throughout each run within the limits of accuracy of the
equipment. Each run consisted of three stages (fig. 3): (1) the model
and carriage were accelerated by a catapult to a maximum velocity,
(2) the carriage and model were decelerated slowly by the water load
for a distance of approximately 110 feet, and (3) the carriage and model
encountered an arresting gear which decelerated it rapidly to rest.
While it is apparent-that the velocity was not strictly constant at any
the during these runs, during the second stage the horizontal decelera-
tion W& less than O.lg, which is believed to be small enough so that
the runs closely represent the steady planing condition.

.

In order to protide an independent check on the accuracy of the
pressure data obtained from these tests, the following procedure was
used: The pressure distributions read at the,time that pressure gage 14
(fig. 1) reached its maximum value were integrated for several landings
to obtain the vertical load and pitching moment about the step. In
figure 4 the results of these integrations are compared with the corre-
sponding values obtained from the accelerometer and load-measuring
dynamometer. (The dynamometer measured the pitching moment about an
axis remote from the step. In order to transfer this moment to the step
the accelerometer reading was used.) These independent measurements
appear to agree within approxhately 12 percent, which is of the same
order of magnitude as the accumulative errors in the experimental
measurements and in the integration process. Although these results
partly substantiate the over-all reliability of these pressure measure-
ments, errors may still exist for the extremely localized pressures in
the vicinity of the peak pressure at the low trims, since the ir$egral
of such errors would usually be small. Such errors might be introduced
by the large size of the pressure gages relative to the area over which
the peak pressure acts or by the frequency-respom.e characteristics of
the gages. While in general the data show no indication of serious
errors due to frequency-responsecharacteristics,the area effect is
sometimes significant.

1

*
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REsums

“

The initial vertical velocities, horizontal velocities, resultant
velocities, flight-path angles, trims, and modelweights for all landings
are presented in table I together with the values of the maximum pres-
sures recorded on each pressure gage. In table II are given instantaneous-
pressun-distribution measurements from each landing together with the
corresponding measurements of time, draft, vertical velocity, and vertical
acceleration. The instantaneous horizontal velocities are essentially
the same as the corresponding initial values since the change in hori-
zontal velocity during any impact was small. Each of the pressure distri-
butions given in table II was read at a time when one of the pressure
gages registered its maximum pressure. Therefore, this table also fur-
nishes the relation between the wetted length based on the peak-pressure
location ~ and the draft of the model.

Time histories of the horizontal velocity for each planing run are
given in figure 3. Planing pressure-distributionmeasurements are given
in table III together with the corresponding instantaneous horizontal
velocities. Measurements at different times during each run are arbitrar-
ily designated by different capital letters. For the runs at 6° trim the
water line fluctuated.slightly relative to the model in such a manner that
peak pressures occurred on several pressure gages; the pressure distribu-
tions presented were read at such times. For the other trims peak press-
ures did not definitely occur on any of the pressure gages; therefore
the distributions presented were read at arbitrary increments of time.

The peak-pressure data sre plotted in figure 5 as the dimensionless

pressure-distribution coefficients & and fi and some complete

02
2P 2 ‘“

pressure distributions from impact and planing runs are shown’in fig-
ures 6 to 9. Wetted-length relations are

DI5CUSS1ON

shown in figure 10.

The treatment of the impact of rectangular flat plates canbe
approached most conveniently by a consideration of the two extreme con-
ditions, namely, the case of very large wetted-length - besm ratios and
the case of very small wetted-length - beam ratios. The experimental
data will be examined first in the light of the theory for very large
wetted-length - besm ratios.,

..

.
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Large Wetted-Length - Beam Ratios

In the impact of prismatic surfaces, when the wetted-length - beam
ratio is large, the instantaneous pressures are generally assumed to be
composed of two terms, one proportional to the square of the component
of the model velocity normal to the keel (norm81 to the plate for the
rectangular flat plate) and one proportional to the normal deceleration
of the model. If the effect of the normal decelerationbe small, as is
subsequently shown to be true for the conditions of these tests, planing
and impacting flat plates having the same normal velocity ~ and the
same geometrical conditions of trim and draft should have the same pres-
sure distribution.

The peak pressure on a planing flat plate is equal to the dynamic
pressure corresponding to the planing velocity:

The planing velocity is related
i= x sinT (see fig. n(a)) so
terms of the normal velocity as

‘2 =

to the normal
that equation

,,

(1)
.

velocity by the relation
(1) can be e~ressed in “

(2)

.
According to the preceding discussion the pressures during an impact
should, for small deceleration effects, depend only on the normal velocity
and the drafi and trim, so that equation (2) for the peak pressure during
planing should be applicable to the impact case a8 well. During an impact’ ‘

the quantity --& is related to the vertical and horizontal,velocities

by the relation -& = + + ~ cot 7 (see fig. 11(c)) so that equation (2)

becomes

‘;p(~+icotT)2 ,‘P
(3a)

,.

For coriveniencethe quantity ~ + ~ cot T, which is seen to be a generali.
zation of the planingvelocity for the impact case”(compare equations (1)
and (3a)), will henceforth be called the equivalent planing velocity

.,

.
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and will be designated by the symbol f. Thus

9“

.

(3b)

pre8sure coefficient ~%
+2

2P
and greater for wetted-length -
1.5, the experimental pressure
would be expected fgom equg-

The experimental variation of the

is shown in figure 5. At trims of 12°
beam ratios greater than approximately
coefficients are nearly equal to 1, as
tion (3b). For all wetted lengths at the lower trims of 6“ and 9“ and
for very short wetted lengths (Ap< 0.2) at the trims of 12° and 15° the
e~erimental pressure coefficients are considerably less than the expected
value of unity. This discrepancy maybe at least partly explained by
the fact that the pressure-gage diaphragms were too large to respond
accurately to the highly localized peak pressures. However, at the trims
of 12° and greater for wetted-length - besm ratios less than a~roxi-
mately 1.5, the peak pres~es are somet~s co~iderably larger than the
expected value. As canbe seen in figure 6, the nature of this deviation

appars to be an increase of the pressure coefficients & with

~ p~

increase of flight-path angle for small wetted-length - beam ratios. .

Small Wetted-Length - Besm Ratios

The variation of the experimental data for small wetted-length -
beam ratios from the theoretical predictions which ‘areapplicable to “
large wetted-length - besm ratios can be explained, at least qualita-
tively, by consideration of the relative differences in theover-all
flow patterns for small and large wetted-len@h - beam ratios which are
illustrated in figure 11.

The peak pressure on the model occurs near the water suiface and is
approximately equal to the dynamic pressure corresponding to the velocity
of the peak-pressure point relative to the undisturbed water’ & For
large wetted-length - beam ratios, the trailing edge of the model is far
below the water surface and thus has little influence on the flow pattern
near the water surface in front of the plate, so that the water pile-up

(% - @ willbe practically independent of the draft (fig. 11(c)). 0

For such cases the velocity of the peak-pressure point is horizontal and
is the same as the equivalent planing velocity (fig. 11(c)). For small
wetted-length - beam ratios, however, the problem is more complicated

---— ___ _.—..— .
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because the trailing edge of the
considerably influence the water

water pile-up, rather than being
beam ratios, tends to be roughly
of the peak-pressure point (see

model is near the surface and-does
pile-up in front of the model. The
constant as for large wetted-length -
proportional to the draft. The velocity
* in fig. n(b)) is then greater than

4

the equivalent planing velocity so that a closer approximation for the
peak pressure is

The.pressure ratio N (the ratio between

(4)

the peak pressures for
large and-small wetted-length - beam ratios) is gi%n approximatelyby
the equation

N=1+2cosT[i,:,T)(~ -]+[i,::T)(5-]2 ‘5)

The derivation of this equation is given in the appendix. The ratio N
,,

is seen to be unity for planing or for O0 flight-path angle and to
increase with increase of fHght-path angle. Also, for large wetted-
Iength -

(
beam ratios ~ greater than 1.5) where the water pile-up is

independent of the draft so that %! = 1, the ratio reduces to 1 regard-
dkd

less of the flight-path angle. ‘
4

Plots of the experimental variation of the
the complete pressure distribution, in the form

coefficient ~
; p#

corrected for the ratio N,

peak pressures and of
of the new pressure

are shown in figures 5

and 7, respectively. The determination of the values of N for these
figures is described in the appendix. For the trims of 12° and higher
the peak pressures are generally in reasonable agreement with the values
predicted by equation (4) (see fig. 5) and there is little variation of
the corrected pressure coefficients with the flight-path angle (see
fig. 7). Figure 5 shows that at the lower trims and at small wetted-
length - beam.ratios for trims up to 15° the experimental pressures ’are
smaller than the predicted pressures, presumably because of the large
size of the pressure-gage diaphragms. “ .

. . —.—— ..——.
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Effect of Deceleration Normal’to the Keel

In order to show the effects of the normal deceleration ~ of the ‘
model, experimental pressure coefficients are superimposed in figure 8
for beam-loading coefficients of 18.8 and 36.5 and for as nearly identical
geometrical conditions of wetted length, trim, and flight-path angle as
were available. Inasmuch as for different beam loadings and constant 1$
wing lift the relative magnitudes of the decelerations will be different
(roughly twice as large for the lighter loading), the good agreement of
the data for these two beam loadings indicates that the effect of
deceleration is small relative to the accuracy of the experimental
measurements. This small effect was to be expected from the approximate
theoretical derivation of Wagner (reference 1) which gives the maximum

increment of acceleration pressure as ~ p~b; this qumitity for all of

the flat-plate landings was less than 0.4 pounds per square inch, which
is of the same order of magnitude as the experimental error.

A similar comparison is made in figure 9 between planing data and
impact data for abesm-loading coefficient of 18.8 at trims of @, 15°,
and 30°. (For the impact data in this figure the ratio N is substan-
tially equal to unity.) Since the deceleration effect in steady planing
is zero, the good agreement of these data also indicates that for the
conditions of these impacts the deceleration effects are .%nall. (Planing
runs 31 and 32 from table III have been omitted from’this comparison
because the presstiea for those runs are small relative to the experi-
mental accuracy and because the velocities are so small that buoyant
forces maybe important.)

CONCLUSIONS

From an analysis of the experimental data obtained duriqg a smooth-
water landing and planing investigation of a.heavily loaded rectangular
flat-plate model, the following conclusions may be drawn:

1. The peak pressures are approximately equal to the dynamic pres-
sure corresponding to the velocity of the peak-pressure point. For
wetted-length - beam ratios greater than 1.5 this velocity is equal to
the e@valent platiingvelocity for all flight-path angles; for wetted-
length - beam ratios less than 1.5 the ratio between .thisvelocity and the.
equivalent planing velocity is unity for planing (0° flight-path angle)
and increases with increase”of flight-path angle. An approximate
equation has been derived for this variation.

L
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2. The @act pressure coefficients based on the equivalent planing
velocity appear to be substantially independent of the deceleration of
the model normal to the plate.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Vs., June 1, 1951

.
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VELOCITYOF
.

APPENDIX

THE PEAK-PRESSURE

13

.

POINT

The velocity of the peak-pressure point can he determined with the
aid of the following sketch: - ‘ -

Pressure distribution

f C (Peak-pres~ point)

o

“t-A Undisturbed water surface

The velocity of,the peak-pressure point in space (see ; in
fig. n(b)) is the resul%ant’of the velocity of the step (point B in
the sketch) relative to a fixed point (point A) and the velocity of the
peak-pressure point (point C) relative to the step. The hori~ontal and
tirtical components‘ofthe velocity of the Qtep =e ~ and y, respec-
tively. The horizontal and vertical components of the velocity of the

peak-pressure point relative to the step are ~ (b~cos T) and

-~ (b~ sin T), respectively. The resultant velocity of the peak

pressure point

+=

J

,

(Al)

\

-.—— ——. .—.— ~. —.— -- .—— —---- — —.— .——.— .—-
f
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.

Assuming that ~ depends only on Ad and T leads to the equation

Combining equations (Al) and (A2) gi’ves

●

w=

.

=

=

(A2)

(m)

From an examination of figure 11 it can be seen that ~ and ~ are

related by the equation ~ = ? ‘in 7 ‘in ‘. Substituting this relation
sin( 7 + T)

into equation (A3) and rearranging the terms gives

= m
The dynamic pressure correspondingto t~s velocity is then
.,

(A4)

— —.
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where

/

15

—

,,

,.

=1+2 sin 7

()

l!?
d sin 7

(

3?
d

N - 1 COS.T +

SiII(7 + T) ad Sin(7 + T), d~d

from which it

increase with

In order

L

is seen that the peak-pressure coefficient

increase of flight-path angle.

)
2

-1 (A6)

to obtain numerical values of the velocity ratio N, plots

were made of the impact data in table II giving the relation between
~ and Ad (figs. 10(a) and lO(b)). These curves were graphically

differentiatedto obtain % (fig. 1O(C)) which was substituted into
dkd

equation (A6) together with the flight-path-angle data from tables I

andlr t’tti’?

The values of” 4, which is approximately equal to

~, were taken from table I.

Insomuch as the accurate evaluation of the quantity ~ Is rat~r

important in the evaluation of N, some idea of the accuracydwith which
this quantity can be obtained from the experimental data is desirable.

3
d

Essentially, the accuracy of depends on the precision with &ich
d~d

the small difference between the large quantities
%.

and Ad can be

determined. Since Ad is obtained by dividing the draft’by the sine

(
of the trim Ad

)

.* , the draft measurement i~ extremely-critical,

especially at the low trims. Consequently, to obtain an independent
check on the draft measurements

grated to determine the draft:

y=;ot-

the accelerometer readings were inte-

IT q--g dt dt (A7)
Jo JO ‘w

Values so obtained for the data for & trim are given in table II and
the corresponding wetted lengths are shown in figure 10(d). This method

,

.* —. .—..-
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is seen to give a larger value of -ter rise (~ - Ad) than was obtained

from the vsriable-resistance slide-wire (reference 16) ,whichwas used
to obtain the dr~ data presented in figures 10(a), 10(b), and 1O(C).
At higher trims the differencesbetween the two methods were smaller
but the accelerometer value was usually (though not always) somewhat
larger. Some uncertainty therefore appears to exist regsrding the exact

Values of Ad and % given in figure 10 and used primarily in figures
d~d

5 and 7. Specifically, use of the accelerometer readings would on the-

average lower the test points for the pressure coefficients ~ in
; pl%

these two figures for large flight-path angles and short wetted lengths.
From an over-all point of view, however, none of the conclusions Of t~s
Wper wo~d be materially changed by the differences shown by the two
methods.

.
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